Let $n\in \mathbb{N}$. Can someone help me prove this by induction:
$$\sum _{i=0}^{n}{i} =\frac { n\left( n+1 \right) }{ 2 } .$$
Let $n\in \mathbb{N}$. Can someone help me prove this by induction:
$$\sum _{i=0}^{n}{i} =\frac { n\left( n+1 \right) }{ 2 } .$$
when $n=0$ then the formula is true.
suppose that $\sum_{i=0}^{n-1} i=\frac{1}{2}(n(n-1))$.
$\sum_{i=0}^{n} i=n+\sum_{i=0}^{n-1} i=n+\frac{1}{2}(n(n-1))=\frac{1}{2}(n(n+1))$
HINT: Induction works like this: you start by the lower most value and put it in the equation to verify it. Next, you assume the equation to be true for some value $k$. Then try to prove that it works for $k+1$ as well.
Using $\sum_{i=1}^{k}i=\frac{k(k+1)}{2}$, can you prove that $\sum_{i=1}^{k+1} i=\frac{(k+1)(k+2)}{2}$ as well?
If $n=1$ Then
$$1=\sum_{i=1}^1{i}=\frac{1(1+1)}{2}=1$$
Now assume $n=k$. Thus
$$\sum_{i=1}^k{i}=\frac{k(k+1)}{2}=1$$
If now $n=k+1$
$$\sum_{i=1}^{k+1}{i}=\left[\sum_{i=1}^k{i}\right]+(k+1)=$$
What does the bracketed term equal? Use algebra to solve.
$n=1$ is clear.
Assume $$\sum _{i=1}^{n-1}i=\frac{(n-1)n}{2}.$$ Then $$\sum _{i=1}^{n}i=\left(\sum _{i=1}^{n-1}i\right)+n=\frac{(n-1)n}{2}+n= \frac{(n-1)n+2n}{2}=\frac{(n+1)n}{2}.$$
$1+n=n+1$, $2+(n-1)=n+1$, ..., $k+(n-(k+1))=n+1$ – jameselmore Jan 13 '15 at 14:28