there is a well known fact that $l^1$ is not the dual of $l^\infty$. An exercise Folland's Real analysis serves as an example for this.(Page 192 ex 19)
Define $\phi_n \in (l^\infty)^*$ by $\phi_n(f)=n^{-1}\sum_1^nf(j)$, Then the sequence ${\phi_n}$ has a weak* cluster point $\phi$, and $\phi$ is an element of $(l^\infty)^*$ that does not arise from an element of $l^1$.
By the knowledge of elementary calculus, it's not difficult to show that for each $f\in l^\infty$, the sequence $\phi_n(f)$ has cluster points, but I don't know how to determine an element $\phi$ of $(l^\infty)^*$ via this, because there can be millions of cluster points. How can I make $\phi$ linear and bounded?