I have the same problem as here: Find characteristic function of ZX+(1-Z)Y with X uniform, Y Poisson and Z Bernoulli. Could you explain last equality? Can I get it without using law of total expectation?
Update
I have some idea, $E $$ e^{it(ZX + (1-Z)Y)} = E $$ (Ze^{itX} + (1-Z)e^{itY}) =$ $ = E $$ (Ze^{itX}) + E((1-Z)e^{itY}) = EZEe^{itX} + E(1-Z)Ee^{itY} = pEe^{itX} + (1-p)Ee^{itY}$
How to prove that $ e^{it(ZX + (1-Z)Y)} = Ze^{itX} + (1-Z)e^{itY} $ ?