Prove that for any $a \in \mathbb{R}$
$$\sum_{k=0}^n (-1)^{k}\binom{n}{k}(a-k)^{n}=n!$$
I rewrote the sum as
$$\sum_{k=0}^n \left((-1)^{k}\binom{n}{k} \sum_{i=0}^n (-1)^{i}a^{n-i} k^{i} \right)$$
and then interchanged the summations, but that led me nowhere.
Any help will be appreciated.
Thanks!