$\newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle}
\newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\dsc}[1]{\displaystyle{\color{red}{#1}}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\half}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\Li}[1]{\,{\rm Li}_{#1}}
\newcommand{\norm}[1]{\left\vert\left\vert\, #1\,\right\vert\right\vert}
\newcommand{\pars}[1]{\left(\, #1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}$
One possible method is to evaluate the integral. Then, we can take the limit of a known function. Indeed, as shown below, the integral is reduced to
$$
\int_{0}^{1}{x^{n - 1} \over 1 + x}\,\dd x
=
\half\bracks{%
\Psi\pars{n + 1\over 2} - \Psi\pars{n \over 2}}
$$
where $\ds{\Psi}$ is the Digamma Function.
\begin{align}&\color{#66f}{\large%
\lim_{n\ \to\ \infty}\ \int_{0}^{1}{n x^{n - 1} \over 1 + x}\,\dd x}
=\lim_{n\ \to\ \infty}\ \bracks{n\int_{0}^{1}{x^{n - 1} - x^{n} \over 1 - x^{2}}
\,\dd x}
\\[5mm]&=\lim_{n\ \to\ \infty}\ \bracks{n\int_{0}^{1}%
{x^{\pars{n - 1}/2} - x^{n/2} \over 1 - x}\,\half\,x^{-1/2}\,\dd x}
=\half\,\lim_{n\ \to\ \infty}\ \bracks{n\int_{0}^{1}%
{x^{\pars{n/2 - 1}} - x^{n/2 - 1/2} \over 1 - x}\,\dd x}
\\[5mm]&=\half\,\lim_{n\ \to\ \infty}\ \braces{n\bracks{%
\int_{0}^{1}{1 - x^{n/2 - 1/2} \over 1 - x}\,\dd x
-\int_{0}^{1}{1 - x^{n/2 - 1} \over 1 - x}\,\dd x}}
\\[5mm]&=\half\,\lim_{n\ \to\ \infty}\ \braces{n\bracks{%
\Psi\pars{n + 1\over 2} - \Psi\pars{n \over 2}}}\tag{1}
\\[5mm]&=\half\,\lim_{n\ \to\ \infty}\ \braces{n\bracks{%
\ln\pars{n + 1 \over 2} - {1 \over n + 1} - \ln\pars{n \over 2} + {1 \over n}}}
\tag{2}
\\[5mm]&=\half\,\lim_{n\ \to\ \infty}\ \braces{n\bracks{%
\ln\pars{1 + {1 \over n}} + {1 \over n\pars{n + 1}}}}
=\color{#66f}{\large\half}
\end{align}
$\ds{\Psi}$ is the
Digamma Function.
In expression $\pars{1}$,
we used the identity
${\bf 6.3.22}$.
In line $\pars{2}$, we used the
Digamma Function Asymptotic Formula ${\bf 6.3.18}$.