This thread is meant as lemma for: Semigroups & Generators: Entire Elements: Construction
Given a smooth mollifier: $\varphi\in\mathcal{L}(\mathbb{R}): \varphi'\in\mathcal{L}(\mathbb{R})$
Do the derivatives exist in the sense: $$f\in\mathcal{C}(\mathbb{R}):\quad\int_{-\infty}^{\infty}\frac{1}{h}\left\{\varphi(\hat{x}+h)-\varphi(\hat{x})\right\}f(\tfrac{1}{n}\hat{x})\mathrm{d}\hat{x}\to\int_{-\infty}^{\infty}\varphi'(\hat{x})f(\tfrac{1}{n}\hat{x})\mathrm{d}\hat{x}\quad(\|f\|_\infty<\infty)$$ (Note the unbounded domain of integration.)