Is is possible to prove that
$${10 \choose 1 } + {10 \choose 3} + {10 \choose 5} + {10 \choose 7} + {10 \choose 9} ={2^{10-1}}$$
Thanks in advance.
Is is possible to prove that
$${10 \choose 1 } + {10 \choose 3} + {10 \choose 5} + {10 \choose 7} + {10 \choose 9} ={2^{10-1}}$$
Thanks in advance.
By the Binomial Theorem $$ \begin{align} &(1+1)^{10}\\ &=\small\binom{10}{0}+\binom{10}{1}+\binom{10}{2}+\binom{10}{3}+\binom{10}{4}+\binom{10}{5}+\binom{10}{6}+\binom{10}{7}+\binom{10}{8}+\binom{10}{9}+\binom{10}{10}\\ &(1-1)^{10}\\ &=\small\binom{10}{0}-\binom{10}{1}+\binom{10}{2}-\binom{10}{3}+\binom{10}{4}-\binom{10}{5}+\binom{10}{6}-\binom{10}{7}+\binom{10}{8}-\binom{10}{9}+\binom{10}{10} \end{align} $$ Add and divide by $2$: $$ 2^9=\binom{10}{0}+\binom{10}{2}+\binom{10}{4}+\binom{10}{6}+\binom{10}{8}+\binom{10}{10} $$ Subtract and divide by $2$: $$ 2^9=\binom{10}{1}+\binom{10}{3}+\binom{10}{5}+\binom{10}{7}+\binom{10}{9} $$