Let $D$ be the set of dyadic rationals in $[0,1]$, i.e. numbers of the form $\frac{a}{2^k}$ with $a,k\in\mathbb{N}$ and $a\leq 2^k$. Midpoint convexity gives that the Jensen's inequality:
$$ f(\lambda a +(1-\lambda) b)\leq \lambda f(a) + (1-\lambda) f(b)\tag{1} $$
holds for every $a,b\in I$ and $\lambda\in D$. Assuming that $|f|$ is bounded by $M$ on $I$, from:
$$ f\left(x_0+\frac{1}{2^n}\right)=f\left(\frac{(2^n-1)x_0+(1+x_0)}{2^n}\right)\leq \left(1-\frac{1}{2^n}\right)f(x_0)+\frac{1}{2^n}f(x_0+1) $$
and:
$$ f\left(x_0+\frac{1}{2^{n+m}}\right)=f\left(\frac{(2^n-1)x_0+(2^{-m}+x_0)}{2^{n}}\right)\leq \left(1-\frac{1}{2^n}\right)f(x_0)+\frac{1}{2^n}f\left(x_0+\frac{1}{2^m}\right) $$
it follows that, for any $m$ big enough (in order to grant $x_0+\frac{1}{2^m}\in I$), we have:
$$\left|f(x_0)-f\left(x_0+\frac{1}{2^{n+m}}\right)\right|\leq\frac{2M}{2^n}\tag{2} $$
implying the continuity of $f$ over the set $R=a+(b-a)D$. However, the set $R$ is dense in $[a,b]$, hence $f$ is continuous over $[a,b]$ and $(1)$ holds without further restrictions on $\lambda$.