$\newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle}
\newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\dsc}[1]{\displaystyle{\color{red}{#1}}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\half}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\Li}[1]{\,{\rm Li}_{#1}}
\newcommand{\norm}[1]{\left\vert\left\vert\, #1\,\right\vert\right\vert}
\newcommand{\pars}[1]{\left(\, #1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}$
$\ds{{\ds{\sum_{j\ =\ 1}^{n\ +\ k\ -\ 1}j{n - j \choose k - 1}}\over
\ds{n \choose k}}:\ {\large ?}.\qquad}$ Lets $\ds{\quad n + k - 1 \equiv m}$.
\begin{align}&\color{#66f}{\large\sum_{j\ =\ 1}^{m}j{n - j \choose k - 1}}
=\sum_{j\ =\ 1}^{m}j\oint_{\verts{z}\ =\ 1^{-}}{\pars{1 + z}^{n - j} \over z^{k}}
\,{\dd z \over 2\pi\ic}
\\[5mm]&=\oint_{\verts{z}\ =\ 1^{-}}
{\pars{1 + z}^{n} \over z^{k}}\sum_{j\ =\ 1}^{m}j\pars{1 \over z + 1}^{j}
\,{\dd z \over 2\pi\ic}
\\[5mm]&=\oint_{\verts{z}\ =\ 1^{-}}
{\pars{1 + z}^{n} \over z^{k}}\bracks{%
{1 + z \over z^{2}} - {\pars{1 + z}^{-m + 1} \over z^{2}}
-m\,{\pars{1 + z}^{-m} \over z}}\,{\dd z \over 2\pi\ic}
\\[5mm]&={n + 1 \choose k + 1} - {n - m + 1 \choose k + 1} - m{n - m \choose k}
\\[5mm]&=\color{#66f}{\large{n + 1 \choose k + 1} - {2 - k \choose k + 1}
-\pars{n + k - 1}{1 - k \choose k}}\,,\qquad
\boxed{\ds{\quad n + k \geq 2\quad}}
\end{align}
$$\sum_{i=1}^{n-k+1} i\binom{n-i}{k-1}$$
– Zubin Mukerjee Jan 06 '15 at 06:02