I was reading this excellent answer on this particular thread about ordered pair definition:
How can an ordered pair be expressed as a set?
At one point the accepted answer says:
The problem with your proposal is that it does not have the defining property we want for ordered pairs: for example, $\emptyset\neq\{\emptyset\}$, so we want $(\emptyset,\{\emptyset\}) \neq (\{\emptyset\},\emptyset)$. But in your proposal, we have: $$\begin{align*} (\emptyset,\{\emptyset\}) &= \Bigl\{ \{\emptyset\}, \bigl\{\{\emptyset\}\bigr\}, \bigl\{ \emptyset, \{\emptyset\}\bigr\}\Bigr\},\\ (\{\emptyset\},\emptyset) &= \Bigl\{ \bigl\{ \{\emptyset\}\bigr\}, \{\emptyset\}, \bigl\{ \{\emptyset\},\emptyset\bigr\}\Bigr\}; \end{align*}$$ so that $(\emptyset,\{\emptyset\}) = (\{\emptyset\},\emptyset)$.
I am not sure how the RHS of both the equations are equal here. What set operations are used to achieve this?