4

My understanding of the remainder theorem for one variable is that for $$f(x)=(x-a)q(x)+r(x)$$$\qquad$ if $x=a\implies f(a)=0\times q(a)+r(a)$ so $f(a)=r(a)$ Is this correct for a multivariate function? $$f(x,y,z)=(x-g(y,z))(y-h(x,z))(z-i(x,y))q(x,y,z)+r(x,y,z)$$so $x=g(y,z)\implies f(g(y,z))=r(x,y,z)$ thanks for any help.

Karl
  • 4,693

0 Answers0