$\newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle}
\newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\dsc}[1]{\displaystyle{\color{red}{#1}}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\half}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\Li}[1]{\,{\rm Li}_{#1}}
\newcommand{\norm}[1]{\left\vert\left\vert\, #1\,\right\vert\right\vert}
\newcommand{\pars}[1]{\left(\, #1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}$
\begin{align}&\color{#66f}{\large\int_{0}^{1}{\ln^{2}\pars{1 + x} \over x}\,\dd x}\
\stackrel{\dsc{1 + x}\ \mapsto\ \dsc{x}}{=}\
\int_{1}^{2}{\ln^{2}\pars{x} \over x - 1}\,\dd x\
\stackrel{\dsc{x}\ \mapsto\ \dsc{1 \over x}}{=}\
\int_{1}^{1/2}{\ln^{2}\pars{1/x} \over 1/x - 1}\,\pars{-\,{\dd x \over x^{2}}}
\\[5mm]&=\int_{1/2}^{1}\ {\ln^{2}\pars{x} \over x\pars{1 - x}}\,\dd x
=\int_{1/2}^{1}\ {\ln^{2}\pars{x} \over x}\,\dd x
+\int_{1/2}^{1}\ {\ln^{2}\pars{x} \over 1 - x}\,\dd x
\\[5mm]&={1 \over 3}\,\ln^{3}\pars{2}
-\left.\vphantom{\LARGE A}\ln\pars{1 - x}\ln^{2}\pars{x}\right\vert_{1/2}^{1}
+\int_{1/2}^{1}\ln\pars{1 - x}\bracks{2\ln\pars{x}\,{1 \over x}}\,\dd x
\\[5mm]&=-\,{2 \over 3}\,\ln^{3}\pars{2} - 2\int_{1/2}^{1}\Li{2}'\pars{x}\ln\pars{x}\,\dd x
\end{align}
where $\Li{\rm s}$ is a
PolyLogarithm Function. We already used the identity
$\ds{\Li{\rm s}'\pars{t}=
{\Li{{\rm s} - 1}\pars{t} \over t}}$ with $\Li{1}\pars{t}=-\ln\pars{1 - t}$.
Then,
\begin{align}
&\color{#66f}{\large\int_{0}^{1}{\ln^{2}\pars{1 + x} \over x}\,\dd x}
=-\,{2 \over 3}\,\ln^{3}\pars{2} - 2\Li{2}\pars{\half}\ln\pars{2}
+2\int_{1/2}^{1}\Li{2}\pars{x}\,{1 \over x}\,\dd x
\\[5mm]&=-\,{2 \over 3}\,\ln^{3}\pars{2} - 2\Li{2}\pars{\half}\ln\pars{2}
+2\int_{1/2}^{1}\Li{3}'\pars{x}\,\dd x
\\[5mm]&=-\,{2 \over 3}\,\ln^{3}\pars{2} - 2\Li{2}\pars{\half}\ln\pars{2}
+2\ \overbrace{\Li{3}\pars{1}}^{\dsc{\zeta\pars{3}}}\ - 2\Li{3}\pars{\half}
\\[1cm]&=-\,{2 \over 3}\,\ln^{3}\pars{2}
-2\ \overbrace{\bracks{{1 \over 12}\,\pi^{2} - \half\,\ln^{2}\pars{2}}}
^{\ds{=\ \dsc{\Li{2}\pars{\half}}}}\ \ln\pars{2} + 2\zeta\pars{3}
\\[5mm]&\phantom{=}- 2\ \overbrace{%
\bracks{{1 \over 6}\,\ln^{3}\pars{2} - {1 \over 12}\,\pi^{2}\ln\pars{2} + {7 \over 8}\,\zeta\pars{3}}}^{\ds{=\ \dsc{\Li{3}\pars{\half}}}}
\ =\ \color{#66f}{\large{1 \over 4}\,\zeta\pars{3}}
\end{align}
$\ds{\Li{2}\pars{\half}}$ and $\ds{\Li{3}\pars{\half}}$ are well known values ( a few ones !!! ) and they are given elsewhere.