How to find the sum of the series:
$\sum _{n=0}^{\infty}a_nx^n$
where $a_0=0,a_1=1,a_{n+1}=a_{n-1}+a_{n}$
Please give some hints on how to find the sum
How to find the sum of the series:
$\sum _{n=0}^{\infty}a_nx^n$
where $a_0=0,a_1=1,a_{n+1}=a_{n-1}+a_{n}$
Please give some hints on how to find the sum
Hint. $$ f(x)=\sum_{n=0}^\infty a_nx^n = x+ \sum_{n=2}^\infty(a_{n-2}+a_{n-1})x^n = x + x\sum_{n=1}^{\infty}a_nx^n+ x^2\sum_{n=0}^{\infty}a_nx^n = x+xf(x)+x^2f(x) $$