Is there a closed-form expression for the infinite series
$\sum_{i=0}^\infty (-\pi)^i\alpha^{(i)}$
For known $\pi,\alpha\in [0,1)$ where $\alpha^{(i)}$ is the rising factorial or Pochhammer symbol $\prod_{j=1}^i (\alpha+j-1)$
Is there a closed-form expression for the infinite series
$\sum_{i=0}^\infty (-\pi)^i\alpha^{(i)}$
For known $\pi,\alpha\in [0,1)$ where $\alpha^{(i)}$ is the rising factorial or Pochhammer symbol $\prod_{j=1}^i (\alpha+j-1)$
From : http://www.mi.sanu.ac.rs/~gvm/radovi/AP-JIS2.pdf Eq: 6
$\sum_{n=0}^{\infty}\left(b\right)^{n}x^{n}=-\frac{E_{b}\left(-\frac{1}{x}\right)}{x\cdot e^{\frac{1}{x}}}$
i.e.
${\displaystyle \sum_{n=0}^{\infty}\left(\alpha\right)^{n}\left(-\pi\right)^{n}=\frac{E_{\alpha}\left(\frac{1}{\pi}\right)}{\pi\cdot e^{-\frac{1}{\pi}}}}$