1

Is there a closed-form expression for the infinite series

$\sum_{i=0}^\infty (-\pi)^i\alpha^{(i)}$

For known $\pi,\alpha\in [0,1)$ where $\alpha^{(i)}$ is the rising factorial or Pochhammer symbol $\prod_{j=1}^i (\alpha+j-1)$

David Pfau
  • 1,099

1 Answers1

1

From : http://www.mi.sanu.ac.rs/~gvm/radovi/AP-JIS2.pdf Eq: 6

$\sum_{n=0}^{\infty}\left(b\right)^{n}x^{n}=-\frac{E_{b}\left(-\frac{1}{x}\right)}{x\cdot e^{\frac{1}{x}}}$

i.e.

${\displaystyle \sum_{n=0}^{\infty}\left(\alpha\right)^{n}\left(-\pi\right)^{n}=\frac{E_{\alpha}\left(\frac{1}{\pi}\right)}{\pi\cdot e^{-\frac{1}{\pi}}}}$

rrogers
  • 986