$$\lim_{n \to \infty}a_n=\dfrac{5^{3\cdot n}}{2^{\left(n+1\right)^2}}$$
I am trying to solve it using the squeeze theorem. I have opened the expression to $$a_n=\dfrac{5^3\cdot 5^n}{2^{n^2}\cdot2^{2n}\cdot2)}$$ I think that the LHS should be $$a_n=\dfrac{2^3\cdot 2^n}{2^{n^2}\cdot2^{2n}\cdot2)}$$ But as for the RHS I do not find a bigger expression, any ideas?
\dfrac
in titles. And the title should not consist solely of mathematical symbols. See meta:http://meta.math.stackexchange.com/questions/9687/guidelines-for-good-use-of-latex-in-question-titles/9730#9730 – Martin Sleziak Dec 29 '14 at 10:42