Let $a_n\geq0$
Prove/disprove: $$\lim_{n \to \infty}a_n=1 \rightarrow \lim_{n \to \infty}\sqrt[n] a_n=1$$
Proof: By definition a sequence $\displaystyle\lim_{n \to \infty}\sqrt[n] b_n=L$ iff $\displaystyle\lim_{n \to \infty}\frac{b_{n+1}}{b_n}=L$ since $\displaystyle\lim_{n \to \infty}a_n=1$ $\displaystyle\lim_{n \to \infty}\frac{a_{n+1}}{a_n}=1$ and therefore $\displaystyle\lim_{n \to \infty}\sqrt[n] a_n=1$
Am I right?