0

Evaluation of:

$$I = \int_{0}^{\pi} \log(\sin(x)) dx$$

Over closed rectangular contour $ABCD$ complex analysis.

Kind of like the contour here: Contour Answer complex analysis.

enter image description here

BUT INSTEAD the right bound will be $\pi$ instead of $\pi/2$

Here is what I do not understand.

I will use the fact that

$$\sin(x) = \frac{e^{ix} - e^{-ix}}{2i}$$

$$I = \int_{0}^{\pi} \log(\frac{e^{ix} - e^{-ix}}{2i}) dx$$

$$I = \int_{0}^{\pi} \log(e^{ix} - e^{-ix}) dx - \left( \pi\log(2) + \frac{i\pi^2}{2} \right)$$

All we need to figure out now is:

$$J = \int_{0}^{\pi} \log(e^{ix} - e^{-ix}) dx$$

Using that contour.

How can we do so?

Amad27
  • 10,465

0 Answers0