Could anyone help me to find the mistake in the following problem? Based on the formula of the sum of a geometric series: \begin{equation} 1 + x + x^{2} + \cdots + x^{n} + \cdots = \frac{1}{1 - x} \end{equation} \begin{equation} 1 + \frac{1}{x} + \frac{1}{x^{2}} + \cdots + \frac{1}{x^{n}} + \cdots = \frac{1}{1 - 1/x} = \frac{x}{x-1} \end{equation} Adding both equations \begin{equation} 2 + x + \frac{1}{x} + x^{2} + \frac{1}{x^{2}} + \cdots + x^{n} + \frac{1}{x^{n}} + \cdots = \frac{1}{1 - x} + \frac{x}{x-1} = \frac{1-x}{1-x} = 1 \end{equation} So, \begin{equation} 2 + x + \frac{1}{x} + x^{2} + \frac{1}{x^{2}} + \cdots + x^{n} + \frac{1}{x^{n}} + \cdots = 1 \end{equation} And the left side is always bigger than $2$ for $x>0$.
What is wrong?? Thanks in advance