Assume $u$ solves the initial-value problem $$\begin{cases}u_{tt}-\Delta u = 0 & \text{in } \mathbb{R}^n \times (0,\infty) \\ u = 0, u_t = h & \text{on }\mathbb{R}^n \times \{t=0\}. \end{cases}$$ Show that $v := u_t$ solves $$\begin{cases}v_{tt}-\Delta v = 0 & \text{in } \mathbb{R}^n \times (0,\infty) \\ v=h,v_t=0 & \text{on }\mathbb{R}^n \times \{t=0\}. \end{cases}$$ This is Stokes' rule.
This is Chapter 2, Exercise 18 of PDE Evans, 2nd edition. Here is the work I did so far:
We have $v_{tt}=(u_t)_{tt}=(u_{tt})_t$ and $\Delta v = \sum_{i=1}^n v_{x_i x_i} = \sum_{i=1}^n (u_t)_{x_i x_i} =\left(\sum_{i=1}^n u_{x_i x_i} \right)_t = (\Delta u)_t.$
Therefore, $$v_{tt}-\Delta v = (u_{tt})_t-(\Delta u)_t=(u_{tt}-\Delta u)_t=0_t=0.$$ Also, $v(x,0)=u_t(x,0)=h$. But how do I show $v_t(x,0)=0$? I can't find anything from $v_t(x,0)=u_{tt}(x,0)$.