I'm asked to calculate
$$\int_{0}^{+\infty} \frac{\sin nx \sin^n x}{x^{n+1}}\text{d}x$$ by integrating $\int_{\Gamma} \frac{e^{niz}\sin^n z}{z^{n+1}}\text{d}z$ on a semi-arc. $(n\in \mathbb{N}; n\geqslant 1)$
I'm having troubles proving:
$$\left|\int_{\Gamma} \frac{e^{niz}\sin^n z}{z^{n+1}}\text{d}z \right| \to 0 \qquad \text{ if } R\to \infty$$
Using the parameterization $z(\theta) = Re^{i\theta}\quad \theta: 0\to \pi$ I always end up with something like this:
$$\left|\int_{\Gamma} \frac{e^{niz}\sin^n z}{z^{n+1}}\text{d}z \right|\leqslant \frac{(1+\color{red}{e^{R}})^n}{R^{n+1}}\cdot M$$
With $M$ some constant, so this obviously does not $\to 0$ if $R\to \infty$
The $\color{red}{e^R}$ originates from $|\sin^n z|$. The problem would be situated here, how can I bound this non-exponential?
How could I tame this integral?