this is related to that one the limits of $a_n $and $b_n$
Let for $n\geq 2\quad a_{n}=\prod\limits_{k=2}^{n}\cos\left(\dfrac{\pi }{2^{k}}\right)$ and $b_{n}=a_{n}\cos\left(\dfrac{\pi }{2^{n}}\right)$ and let $c_{n}=a_{n}\sin\left(\dfrac{\pi }{2^{n}}\right)$
Show that $0\leq a_{n}-l\leq \dfrac{\pi^{2} }{2^{2n+1}}$ (note that: $|1-\cos x|\leq \dfrac{x^{2}}{2})$
can we say that $$b_n < l < a_n$$
Then $$ 0 < a_n-l< a_n-b_n$$
$$a_n- b_n = a_n(1-\cos(\dfrac{\pi}{2^n})$$
since $|a_n|\leq 1$ and $1-\cos(\dfrac{\pi}{2^n})\leq \dfrac{\pi}{2^{n+1}} $
am i right