Let $\displaystyle f(x)$ satisfies the condition $|f(x)|\leq 1-\cos x$ on the interval $-\frac{\pi}{2}\leq x\leq \frac{\pi}{2}$.
Prove that $f(x)$ is differentiable at $x=0$ and find $f^\prime(0)$.
My idea:
$\lim_{x\to 0} |\frac{f(x)-f(0)}{x}|\leq \lim_{x\to 0} \frac{|f(x)|+|f(0)|}{x}\leq \lim_{x\to 0}\frac{1-\cos x }{x}\leq \lim_{x\to 0}\frac{2 }{x}$
but i m stack in here