2

Let $\displaystyle f(x)$ satisfies the condition $|f(x)|\leq 1-\cos x$ on the interval $-\frac{\pi}{2}\leq x\leq \frac{\pi}{2}$.

Prove that $f(x)$ is differentiable at $x=0$ and find $f^\prime(0)$.

My idea:

$\lim_{x\to 0} |\frac{f(x)-f(0)}{x}|\leq \lim_{x\to 0} \frac{|f(x)|+|f(0)|}{x}\leq \lim_{x\to 0}\frac{1-\cos x }{x}\leq \lim_{x\to 0}\frac{2 }{x}$

but i m stack in here

Raio
  • 1,537

2 Answers2

3

I think you are stuck because you are not familiar with the fact that $$\lim_{x\to 0}\frac{1-\cos x }{x}=0.$$

You can find the proof here: Evaluating $\lim_{x\to0}\frac{1-\cos(x)}{x}$

Ludolila
  • 3,034
2

Your condition forces $f(0)=0$. Now, $$ \frac{f(x)-f(0)}{x-0} = \frac{f(x)}{x}, $$ and $$ \left| \frac{f(x)}{x} \right| \leq \frac{1-\cos x}{|x|}. $$ Letting $x \to 0$, what do you get?

Siminore
  • 35,136