Show that $$\dfrac{(1+x)^3}{(1-x)^3} =1 + \displaystyle\sum_{n=1}^{\infty} (4n^2+2)x^n$$
I tried with the partial frationaising the expression that gives me
$\dfrac{-6}{(x-1)} - \dfrac{12}{(x-1)^2} - \dfrac{8}{(x-1)^3} -1$ how to proceed further on this having doubt with square and third power term in denominator.