3

consider the normed linear spaces $$(\mathcal C[0,1], ||.|| _1), \;(\mathcal C[0,1], ||.|| _2),\;(\mathcal C[0,1], ||.|| _3)\ldots, (\mathcal C[0,1], ||.|| _p)$$ and $(\mathcal C[0,1], ||.|| _\infty)$. Then what can you conclude about the correspoding open unit balls?

My work

$||f||_1=\int_0^1 |f| d\mu\leq1$ (because it is in unit ball)

And so, I can give large height triangle whose area is simply $<1$. So, the unit ball with respect to $||.||_1$ need not be the subset of the unit ball w.r.to $||.||_\infty$ What happens for the remaining cases? If I use $U_i$ for the unit ball w.r.to $||.||_i$, can I conclude that

$$U_1\supset U_2\supset\ldots \supset U_\infty$$

David
  • 4,201

0 Answers0