First of all $1 \ne 0$, because if $1=0$, then $a=a\cdot 1=a\cdot 0=0 , \forall a \in R$ and $R\setminus\{0\}$ would be empty, not possible.
Now it is given for every $a\in R\setminus\{0\}$, $\exists a' \in R$ such that $a'a=1$.
If for some $x\in R\setminus\{0\}$, $x'=0$ then $1=x'x=0\cdot x=0$, impossible.
So for every $a \in R\setminus\{0\}$, $\exists a' \in R\setminus\{0\}$ such that $a'a=1$, so also $\exists a'' \in R\setminus\{0\}$ such that $a''a'=1$, hence
$a'a''=a'(a''\cdot1)=a'\big(a''(a'a)\big)=a'\big((a''a')a \big)=a'(1\cdot a)=(a'\cdot 1)a=a'a , \forall a \in R\setminus\{0\} $, so $a'(a''-a)=0$, whence
$1\cdot(a''-a)=(a''a')(a''-a)=a''\big(a'(a''-a)\big)=a''\cdot0=0 , \forall a\in R\setminus\{0\} $.
Now if $a''-a \ne 0$, then $\exists (a''-a)' \in R\setminus\{0\}$ such that $(a''-a)'(a''-a)=1$, whence
$1=(a''-a)'(a''-a)=\Big((a''-a)'\cdot1\Big)(a''-a)=(a''-a)'\Big(1\cdot(a''-a)\Big)=(a''-a)'\cdot0$ $=0$, impossible!
So $a''-a=0$ i.e. $a''=a, \forall a \in R\setminus\{0\} $; thus for every $a \in R\setminus\{0\}$, $\exists a' \in R$ \ $\{0\}$ such that $a'a=1=aa'$.
Now $0\cdot 1=1\cdot 0=0$ and to show that $1 \in R\setminus\{0\} $ is an identity of $R\setminus\{0\}$ we note that for every $a \in R\setminus\{0\}$, $1\cdot a=(aa')a=a(a'a)=a\cdot1=a$.
Lastly to show that $R\setminus\{0\}$ is closed under $\cdot$ we note that $a\ne0$ and $ab=0 \implies b=1\cdot b=(a'a)b =a'(ab)=a'\cdot0=0$; $b \ne 0$ and $ab=0 \implies a=a\cdot 1=a(bb')=(ab)b'=0\cdot b'=0 $, thus $a\ne0 , b\ne0 \implies ab \ne 0$, hence $( R\setminus\{0\}, \cdot)$ is a group.