In the proof of Transforming $a\cos\left(\, x\,\right)+b\sin\left(\, x\right)$ to $r\cos\left(\,\phi - x\,\right)$
\begin{align} a\cos\left(\, x\,\right) + b\sin\left(\, x\,\right) &=\,\sqrt{\,a^{2} + b^{2}\,}\, \left[\,\frac{a}{\,\sqrt{\, a^{2} + b^{2}\,}\,}\,\cos\left(\, x\,\right) +\frac{b}{\,\sqrt{\, a^{2} + b^{2}\,}\,}\,\sin\left(\, x\,\right)\,\right]\, \\[2mm]&=\,\sqrt{\,a^{2} + b^{2}\,}\,\left[\, \cos\left(\,\phi\,\right)\cos\left(\, x\,\right) + \sin\left(\,\phi\,\right)\sin\left(\,x\,\right) \,\right] \\[2mm]&=\,\sqrt{\, a^{2} + b^{2}\,}\,\cos\left(\,\phi - x\,\right) \end{align}
why did we factor out $\,\sqrt{\, a^{2} + b^{2}\,}\,$ where did this idea came from ?. It seems out of the blue.