find the limit of $\large\frac{n}{\sqrt[n]{n!}}$ using the ratio test
$$\Large \frac{\left(\frac{(n+1)^{n+1}}{(n+1)!}\right)^\frac{1}{n+1}}{\left(\frac{n^n}{n!}\right)^\frac{1}{n}}$$
I have added $\frac{n}{n}$ and $\frac{n+1}{n+1}$ to both components and got:
$$\Large\frac{\left(\frac{(n+1)^{n+1}}{(n+1)!}\right)^\frac{n}{n(n+1)}}{\left(\frac{n^n}{n!}\right)^\frac{n+1}{n(n+1)}}$$
and then
$$\Large\frac{\left(\frac{(n+1)^{n+1}}{(n+1)!}\right)^\frac{n}{n(n+1)}}{\left(\frac{n^n}{n!}\right)^\frac{n}{n(n+1)}}+\frac{\left(\frac{(n+1)^{n+1}}{(n+1)!}\right)^\frac{n}{n(n+1)}}{\left(\frac{n^n}{n!}\right)^\frac{1}{n(n+1)}}$$ $$\Large=\left(\frac{\frac{(n+1)^{n+1}}{(n+1)!}}{(\frac{n^n}{n!})}\right)^\frac{n}{n(n+1)}+\frac{\left(\frac{(n+1)^{n+1}}{(n+1)!}\right)^\frac{n}{n(n+1)}}{\left(\frac{n^n}{n!}\right)^\frac{1}{n(n+1)}}$$ $$\Large=\left(\frac{\frac{(n+1)^{n+1}}{(n+1)!}}{(\frac{n^n}{n!})}\right)^\frac{n}{n(n+1)}+\frac{\left(\frac{(n+1)^{n+1}}{(n+1)!}\right)^\frac{n}{n(n+1)}}{\left(\frac{n^n}{n!}\right)^\frac{1}{n(n+1)}}$$ $$=\left(\frac{n+1}{n}\right)^n+\Large\frac{\left(\frac{(n+1)^{n+1}}{(n+1)!}\right)^\frac{n}{n(n+1)}}{\left(\frac{n^n}{n!}\right)^\frac{1}{n(n+1)}}$$
How to I proceed from here? (the limit is $e$)
\left(
and\right)
for bigger brackets. – hrkrshnn Dec 20 '14 at 17:52