2

Possible Duplicate:
How can I evaluate $\sum_{n=1}^\infty \frac{2n}{3^{n+1}}$

please help me with this $$\sum\limits_{k=0}^{\infty}\frac{k}{3^k}$$

I need just a hint, not a full answer. Thanks!

dt160
  • 21
  • 1
  • 2

2 Answers2

3

There are several ways to do this. One involves the fact that $$ \frac{k}{3^k} = kx^k = x\cdot kx^{k-1} = x\cdot \frac{d}{dx} x^k $$ where $x=1/3$, and $\displaystyle\sum_{k=0}^\infty x\cdot \frac{d}{dx} x^k$ can be found.

Another looks like this: $$ \sum_{k=0}^\infty \frac{k}{3^k} = \sum_{k=1}^\infty \frac{k}{3^k} = \left\{\begin{array}{cccccccccccccccc} & & 1/3 \\ & + & 1/9 & + & 1/9 \\ & + & 1/27 & + & 1/27 & + & 1/27 \\ & + & 1/81 & + & 1/81 & + & 1/81 & + & 1/81 \\ & + & \cdots \end{array}\right. $$

Then you can sum the first column, then the second column, etc., and finally find the sum of all of the column sums.

-4

$$\sum_{k=0}^{\infty}{kr^k}=\frac{r}{(r-1)^2}$$ In your case $r=\frac{1}{3}$