The $\sqrt{2}$ is a complete red herring. In fact consider
$$I=\int_0^{\frac{\pi}{2}}\frac{1}{1+\tan^{\alpha}(x)}\,dx$$
where $\alpha$ is any nonnegative real number. Then we have
\begin{align}
I&=\int_0^{\frac{\pi}{2}}\frac{1}{1+\tan^{\alpha}(x)}\,dx
\\&=\int_0^{\frac{\pi}{2}}\frac{1}{1+\frac{\sin^{\alpha}(x)}{\cos^\alpha(x)}}\,dx
\\&=\int_0^{\frac{\pi}{2}}\frac{\cos^{\alpha}(x)}{\cos^{\alpha}(x)+\sin^{\alpha}(x)}\,dx
\\&=\int_0^{\frac{\pi}{2}}\frac{\sin^{\alpha}(y)}{\cos^{\alpha}(y)+\sin^{\alpha}(y)}\,dy
\end{align}
where in the last step we have used the substitution $y=\dfrac{\pi}{2}-x$.
Now we can combine the final two steps to get
\begin{align}
2I&=\int_0^{\frac{\pi}{2}}\frac{\cos^{\alpha}(x)}{\cos^{\alpha}(x)+\sin^{\alpha}(x)}\,dx+\int_0^{\frac{\pi}{2}}\frac{\sin^{\alpha}(x)}{\cos^{\alpha}(x)+\sin^{\alpha}(x)}\,dx
\\&=\int_0^{\frac{\pi}{2}}\frac{\cos^\alpha(x)+\sin^{\alpha}(x)}{\cos^{\alpha}(x)+\sin^{\alpha}(x)}\,dx
\\&=\int_0^{\frac{\pi}{2}} 1\,dx
\\&=\frac{\pi}{2}
\end{align}
Hence $I=\dfrac{\pi}{4}$.