I'm looking for a function counting all numbers, let's call them power semi-primes for the moment, of the form $a^nb^m\leq t$. $a,b$ are primes and might be equal.
Edit: $n$ and $m$ are fixed.
I think this is related to the standard semi-prime counting function $\pi_2(t)$, since all semi-primes $ab$ can be mapped to $a^nb^m$.
What I got so far, is the following: Since $\pi_1(t^{1/n})$ counts the $n$th power of primes below $t$, I conclude that, if $n=m$, $\pi_2(t^{1/n})$ counts the number of power semi-primes $(ab)^n$ less than $t$.
But what if $n\neq m$? How does the argument of $\pi_2(\cdot)$ look like in this case?
I tried $\pi_2(t^{1/\sqrt{(n+m)}})$, that to my own surprise worked well for a restricted set or primes ($a,b<10000$) and a few values of $t$(<1000), $n$ and $m$. Unfortunately, the exponent of $t$ doesn't match in the case $n=m$, since $1/n\neq 1/\sqrt{2n}$, so I assume that, this is nothing but mere accidential coincidence. Additional question: Can anyone disprove this?