A friend asked me the following question:
"In an experiment, we are tossing a fair coin 200 times. We say that a coin flip was a success if it's heads. What is the chance for having at least 6 consecutive successes?"
And according to him, the answer is nearly 100%.
My calculations were different. I'd like to know if I am mistaken or he is.
What I did:
I noticed that if we have 6 consecutive successes, then the first success in our winning streak can be anywhere from the first experiment to the 194'th experiment.
So when you think about it, we can have first 6 coin flips successful, and then whatever. or we can have first flip failure, and then 6 successes, and then whatever, or we can have 2 failures and then 6 successes and then whatever, and so on.
When you sum it all up, it looks like $S=(\frac{1}{2})^6+\frac{1}{2}*(\frac{1}{2})^6+(\frac{1}{2})^2*(\frac{1}{2})^6+...+(\frac{1}{2})^{193}*(\frac{1}{2})^6$
This is a geometric series, with $a_1=(\frac{1}{2})^6$, $n=194$, $q=\frac{1}{2}$.
Using the well known formula $S_n=\frac{a_1(q^n-1)}{q-1}$ I get that in our case $S_{194}=\frac{1}{32}$.
Was I mistaken somewhere? not really close to the 100% mark. Or is my friend mistaken.
Edit: I just realized my mistake. It's possible for example to have first one success, second one failure, and then 6 successes. I didn't take that into account. So my calculation is wrong. So how do I calculate this?