$\newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle}
\newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\dsc}[1]{\displaystyle{\color{red}{#1}}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\half}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\Li}[1]{\,{\rm Li}_{#1}}
\newcommand{\norm}[1]{\left\vert\left\vert\, #1\,\right\vert\right\vert}
\newcommand{\pars}[1]{\left(\, #1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}$
$\ds{}$
\begin{align}&\color{#99f}{\large%
\int_{0}^{4}{\ln\pars{x} \over \root{4x - x^{2}}}\,\dd x}
=\int_{0}^{4}{\ln\pars{4\bracks{x/4}} \over \root{x/4 - \bracks{x/4}^{2}}}
\,{\dd x \over 4}
=\int_{0}^{1}{\ln\pars{4x} \over \root{x - x^{2}}}\,\dd x
\\[5mm]&=2\int_{0}^{1}{\pars{4x}^{-1/2}\,\ln\pars{4x}\pars{1- x}^{-1/2}}\,\dd x
=2\lim_{\mu\ \to\ -1/2}\,\,\,\partiald{}{\mu}
\int_{0}^{1}{\pars{4x}^{\mu}\pars{1- x}^{-1/2}}\,\dd x
\\[5mm]&=2\lim_{\mu\ \to\ -1/2}\,\,\,\partiald{}{\mu}\bracks{%
4^{\mu}\,{\Gamma\pars{\mu + 1}\Gamma\pars{1/2} \over \Gamma\pars{\mu + 3/2}}}
=\color{#66f}{\large 0}
\end{align}