Surprisingly we can take a very general approach here. Consider the function
$$I=I(x;a,b,c)=\int\frac{\mathrm dx}{ax^2+bx+c}$$ With the requirement that $4ac>b^2$. We may compute this by comleting the square:
$$I=\int\frac{\mathrm dx}{a\left(x+\frac{b}{2a}\right)^2+g}$$
Where $g=c-\frac{b^2}{4a}$. Then preforming the substitution $x+\frac{b}{2a}=\sqrt{\frac{g}{a}}\tan u$,
$$I=\sqrt{\frac{g}{a}}\int\frac{\sec^2u\,\mathrm du}{g\tan^2u+g}$$
Which simplifies to
$$I=\frac{2u}{\sqrt{4ac-b^2}}$$
$$I(x;a,b,c)=\frac{2}{\sqrt{4ac-b^2}}\arctan\frac{2ax+b}{\sqrt{4ac-b^2}}\,+C$$
So for your integral, we use $a=1,b=2,c=3$ to see that
$$\int_0^1\frac{\mathrm dx}{x^2+2x+3}=I(1;1,2,3)-I(0;1,2,3)=\frac1{\sqrt2}\operatorname{arccot}2\sqrt2$$
Which is a very clean answer with infinite accuracy (as opposed to a decimal expansion)... What could be better?
Extra special Bit
If we define $$K_n=K(x;n;a,b,c)=\int\frac{\mathrm dx}{\left[a(x+b)^2+c\right]^{n+1}}$$
We can preform the substitution $w=x+b$ then integrate by parts with $\mathrm dv=\mathrm dw$ to see that $K_n$ satisfies the recurrence relation
$$K_n=\frac{w}{2cn(aw^2+c)^n}+\frac{2n-1}{2cn}K_{n-1}$$
With base case $K_0=I(w;a,0,c)$. Hence we have a solution to our recurrence:
$$K_n=\frac1{4^nc^n\sqrt{ac}}{2n\choose n}\arctan\left[(x+b)\sqrt{\frac{a}{c}}\right]+\frac{x+b}{2c}\sum_{k=0}^{n-1}\frac{\left[a(x+b)^2+c\right]^{k-n}}{c^k(n-k)}\prod_{i=1}^{k}\frac{2n-2i+1}{2n-2i+2}$$
And if that in all of it's infinite precision is not beautiful, then I don't know what is.