Suppose you have a sequence 2014, 20142014, 201420142014, . . . Show that there is an element in this sequence such that it is divisible by 2013.
This is a problem I had on an exam and I know that this must be pidgeonhole problem but I was wondering if someone could help me figure out how to get a solution.
All I could figure out was that if you divide 2013 to the first couple you will always have a remainder of 1. Also, your numbers will be 1, 10001, 100010001, etc I was thinking that you have 2013 pidgeonholes and you keep on dividing into the sequence until you reach 2013 remainders, but I feel like I'm not approaching this problem in the right way? Could anyone assist me in figuring this out? Although the exam is over I would like to further my studies and understand problems such as these.