1

In proving the $\displaystyle\frac{200}{\pi} \sum_{k=0}^\infty\frac{(-1)^k}{(2k+1) \cosh\left((2k+1) \frac\pi2\right) }= 25$ I use the below integral, because in calculation the integral by the residue theorem, the series appear and I can evaluate the amount of the series:

$$\oint\frac{\pi \csc(\pi z)}{(2z+1) \cosh\left(\frac\pi2 (2z+1)\right) } \,\mathrm dz $$

I mean by solving the below equation I can find the amount of the series:

$$\oint\frac{\pi \csc(\pi z)}{(2z+1) \cosh\left(\frac\pi2 (2z+1)\right) } \,\mathrm dz =2\pi i \left(- \frac \pi2+ 4\sum_{n=0}^\infty\frac{(-1)^n}{(2n+1) \cosh\left((2n+1) \frac\pi2\right)}\right) $$

I cannot understand why the left tends to $0$, As $n\to\infty$

Aditya Hase
  • 8,851

0 Answers0