It is not difficult to inductively prove that
$$\eqalign{ & \phi = \phi + 0 \cr & {\phi ^2} = \phi + 1 \cr & {\phi ^3} = 2\phi + 1 \cr & {\phi ^4} = 3\phi + 2 \cr & {\phi ^5} = 5\phi + 3 \cr & \cdots = \cdots \cr & {\phi ^n} = {F_n}\phi + {F_{n - 1}} \cr} $$
Thus one would have
$$\frac{{{\phi ^{n + 1}} - {F_n}}}{{{\phi ^n} - {F_{n - 1}}}} = \frac{{{F_{n + 1}}}}{{{F_n}}}$$
$$\frac{{\phi - \displaystyle\frac{{{F_n}}}{{{\phi ^n}}}}}{{1 - \displaystyle\frac{{{F_{n - 1}}}}{{{\phi ^n}}}}} = \frac{{{F_{n + 1}}}}{{{F_n}}}$$
Now I remember that in Apostol's Calculus he asked to prove for $F_1 = 1$, $F_2 = 2$ $$F_n < \phi^n$$ Using this, (which I would like to prove too) you have
$$\phi - \frac{{{F_n}}}{{{\phi ^n}}} > \phi - 1$$
$$1 - \frac{1}{\phi }\frac{{{F_{n - 1}}}}{{{\phi ^{n - 1}}}} < \frac{{\phi - 1}}{\phi } < 1$$
But this would mean (I'm not 100% sure on this. EDIT: This is wrong)
$$\frac{{\phi - 1}}{{ \frac{{\phi - 1}}{\phi }}} > \frac{{\displaystyle \phi - \frac{{{F_n}}}{{{\phi ^n}}}}}{{1 - \displaystyle \frac{1}{\phi }\frac{{{F_{n - 1}}}}{{{\phi ^{n - 1}}}}}} = \frac{{{F_{n + 1}}}}{{{F_n}}}$$
$$\phi > \frac{{{F_{n + 1}}}}{{{F_n}}}$$
ADD: I guess it then can be proved that
$$\left| {\phi - \frac{{{F_{n + 1}}}}{{{F_n}}}} \right| = \left| {\phi - \frac{{\phi - \frac{{{F_n}}}{{{\phi ^n}}}}}{{1 - \frac{{{F_{n - 1}}}}{{{\phi ^n}}}}}} \right|$$
Then if you can prove $$\frac{{{F_n}}}{{{\phi ^n}}} \to L$$
$$\frac{{{F_n}}}{{{F_n}\phi + {F_{n - 1}}}} \to L$$
(It can be proved that the limit is $\frac{\phi+2}{\phi}$, but using the quotient limit, which cant be used.)
$$\left| {\phi - \frac{{{F_{n + 1}}}}{{{F_n}}}} \right| = \left| {\phi - \frac{{\phi - \frac{{{F_n}}}{{{\phi ^n}}}}}{{1 - \frac{{{F_{n - 1}}}}{{{\phi ^n}}}}}} \right| < \epsilon $$
Could someone help?