Using L'Hospital's rule for this is invalid, because $n!$ is an integer-only function without a derivative.
You're idea of using logarithms is a good one, though.
$\lim\limits_{n\to\infty} \frac{n!}{n^n}^\frac{1}{n}=e^{\lim\limits_{n\to\infty} ln\frac{n!}{n^n}^\frac{1}{n}}=e^{\lim\limits_{n\to\infty} \frac{1}{n}\sum\limits_{i=1}^n\ln i-\ln n}$
$\ln(x)$ is a monotone strictly increasing function, so $\sum\limits_{i=1}^n\ln i\leq\int\limits_1^{n+1}ln(x)dx$. You can verify this graphically. Playing around with the integrals a bit, we can also get a lower bound of $\int\limits_1^n\ln(x)dx$. You can also verify this. Then:
$n\ln n-n+1\leq\sum\limits_{i=1}^n\ln i\leq(n+1)\ln(n+1)-n$.
Dividing by $n$ and subtracting $\ln n$ yields:
$-1+\frac{1}{n}\leq\frac{\sum\limits_{i=1}^n\ln i}{n}-\ln n\leq\frac{n+1}{n}\ln(n+1)-1-\ln n=\frac{n+1}{n}(\ln(n+1)-\ln n)+\frac{n+1}{n}(\ln n)-1-\ln n=\frac{n+1}{n}(\ln(n+1)-\ln n)+\frac{1}{n}(\ln n)-1$
We can now get an inequality about limits from this expression.
$-1\leq\lim\limits_{n\to\infty}\frac{\sum\limits_{i=1}^n\ln i}{n}-\ln n\leq1\times0+0-1=-1$
We can see that $\lim\limits_{n\to\infty}\frac{\sum\limits_{i=1}^n\ln i}{n}-\ln n=-1$, which finally lets us solve the original limit.
$\lim\limits_{n\to\infty} \frac{n!}{n^n}^\frac{1}{n}=e^{-1}=\frac{1}{e}$