$\newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle}
\newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\dsc}[1]{\displaystyle{\color{red}{#1}}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\half}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\Li}[1]{\,{\rm Li}_{#1}}
\newcommand{\norm}[1]{\left\vert\left\vert\, #1\,\right\vert\right\vert}
\newcommand{\pars}[1]{\left(\, #1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}$
\begin{align}
&\bbox[10px,#ffd]{\ds{%
\sum_{x_{1}\ =\ 1}^{6}\sum_{x_{2}\ =\ 0}^{5}\sum_{x_{3}\ =\ 4}^{9}
\sum_{x_{4}\ =\ 2}^{7}\delta_{x_{1} + x_{2} + x_{3} + x_{4},\,20}}} =
\sum_{x_{1}\ =\ 0}^{5}\sum_{x_{2}\ =\ 0}^{5}\sum_{x_{3}\ =\ 0}^{5}
\sum_{x_{4}\ =\ 0}^{5}
\delta_{\pars{x_{1} + 1} + x_{2} + \pars{x_{3} + 4}+ \pars{x_{4} + 2},20}
\\[5mm] = &\
\sum_{x_{1}\ =\ 0}^{5}\sum_{x_{2}\ =\ 0}^{5}\sum_{x_{3}\ =\ 0}^{5}
\sum_{x_{4}\ =\ 0}^{5}\delta_{x_{1} + x_{2} + x_{3} + x_{4},13} =
\sum_{x_{1}\ =\ 0}^{5}\sum_{x_{2}\ =\ 0}^{5}\sum_{x_{3}\ =\ 0}^{5}
\sum_{x_{4}\ =\ 0}^{5}\bracks{z^{13}}z^{x_{1} + x_{2} + x_{3} + x_{4}} =
\bracks{z^{13}}\pars{\sum_{x = 0}^{5}z^{x}}^{4}
\\[5mm] = &\
\bracks{z^{13}}\pars{z^{6} - 1 \over z - 1}^{4} =
\bracks{z^{13}}\pars{1 - z^{6}}^{4}\pars{1 - z}^{-4} =
\bracks{z^{13}}\sum_{k = 0}^{4}{4 \choose k}\pars{-z^{6}}^{k}
\sum_{n = 0}^{\infty}{-4 \choose n}\pars{-z}^{n}
\\[5mm] = &\
\bracks{z^{13}}\sum_{k = 0}^{4}\sum_{n = 0}^{\infty}{4 \choose k}
{-4 \choose n}\pars{-1}^{k + n}\,z^{6k + n} =
\sum_{k = 0}^{4}\sum_{n = 0}^{\infty}{4 \choose k}
{n + 3 \choose n}\pars{-1}^{k}\,\,\delta_{6k + n,13}
\\[5mm] = &\
\sum_{k = 0}^{4}\sum_{n = 0}^{\infty}{4 \choose k}
{n + 3 \choose 3}\pars{-1}^{k}\,\,\delta_{n,13 - 6k} =
\sum_{k = 0}^{4}{4 \choose k}
{16 - 6k \choose 3}\pars{-1}^{k}\bracks{13 - 6k \geq 0}
\\[5mm] = &\
\sum_{k = 0}^{4}{4 \choose k}
{16 - 6k \choose 3}\pars{-1}^{k}\bracks{k \leq {13 \over 6}} =
\sum_{k = 0}^{2}{4 \choose k}{16 - 6k \choose 3}\pars{-1}^{k}
\\[5mm] = &\
\underbrace{{4 \choose 0}{16 \choose 3}}_{\ds{560}}\ -\
\underbrace{{4 \choose 1}{10 \choose 3}}_{\ds{480}}\ +\
\underbrace{{4 \choose 2}{4 \choose 3}}_{\ds{24}}\ =\
\bbox[10px,border:2px groove navy]{\ds{\large 104}}
\end{align}