I need to prove that $\mathbb{R}\backslash\mathbb{Q} \sim \mathbb{R} $
Using Cantor-Bernstein, need to show an injection from $\mathbb{R}\backslash\mathbb{Q}$ to $\mathbb{R}$ and from $\mathbb{R}$ to $\mathbb{R}\backslash\mathbb{Q}$.
$\mathbb{R}\backslash\mathbb{Q}$ is a subset of $\mathbb{R}$ so only need to show injection from $\mathbb{R}$ to $\mathbb{R}\backslash\mathbb{Q}$ to complete the proof.
Possible injection:
$f:\mathbb{R}\to \mathbb{R}\backslash\mathbb{Q}$ defined as $f(x) = \pi x$ if $x$ is not a multiple of $\pi$; otherwise $f(x) = \sqrt{2} x$.
Not sure if $f$ actually is an injection...