Kindly solve this question
$$\int \frac{1}{(\sin x + \cos x)} dx$$
I reached up to
$$\frac{(1+\tan^2x)}{1-\tan^2x + 2\tan x}$$
Kindly solve this question
$$\int \frac{1}{(\sin x + \cos x)} dx$$
I reached up to
$$\frac{(1+\tan^2x)}{1-\tan^2x + 2\tan x}$$
HINT:
$$\sin x+\cos x=\sqrt2\sin\left(x+\frac\pi4\right)$$ or $$\sin x+\cos x=\sqrt2\cos\left(x-\frac\pi4\right)$$
More generally, set $a=r\cos\phi,b=r\sin\phi$ to find
$a\sin x+b\cos x=\sqrt{a^2+b^2}\sin\left(x+\arctan2(b,a)\right)$
Similarly, set $a=r\sin\psi,b=r\cos\psi$ to find
$a\sin x+b\cos x=\sqrt{a^2+b^2}\cos\left(x-\arctan2(a,b)\right)$
arctan2 has been defined here
I converted sinx and Cosx into tan(x/2) form and reached as mentioned
– sunny malhotra Dec 09 '14 at 13:26Hint:
Use the formula $$
\cos x = \frac{e^{ix} + e^{-ix}}{2}\qquad\text{and}\qquad\sin x = \frac{e^{ix}-e^{-ix}}{2i}. $$ Now use the substitution $u = e^{ix}$. Can you proceed from here?
Hint : \begin{align} \int \frac{\mathrm dx}{\sin x + \cos x} &=\int \frac{\mathrm dx}{\sin x + \cos x}\cdot \frac{\sin x - \cos x}{\sin x - \cos x}\\ &=\int \frac{\sin x - \cos x}{\sin^2 x - \cos^2 x}\mathrm dx\\ &=\int \frac{\sin x}{1 - 2\cos^2 x}\mathrm dx-\int \frac{\cos x}{2\sin^2 x -1}\mathrm dx\\ &=\int \frac{1}{2\cos^2 x-1}\mathrm d(\cos x)-\int \frac{1}{2\sin^2 x -1}\mathrm d(\sin x)\\ \end{align}