-1

$$\sum_{k=1}^n k^3=\frac{n^2 (n+1)^2}{4}$$

Please help

matt
  • 21

1 Answers1

0

If $n=1$, it holds; Suppose that $n=m$, the equality also holds, i.e., $$\sum_{k=1}^mk^3=\frac{m^2(m+1)^2}{4}.$$

Now $$\sum_{k=1}^{m+1}k^3=\frac{m^2(m+1)^2}{4}+(m+1)^3=\frac{(m+1)^2(m+2)^2}{4}.$$

Paul
  • 20,553
  • 1
    The last equality hides the algebra which is the essence of the proof. I think it should be expanded showing all the steps. – marty cohen Dec 09 '14 at 02:11