For any $\color{blue}{\phi\in(0,2\pi)}$ both series converge due to Dirichlet's criterion:
If $\{a_n\}_{n\in\mathbb{N}}$ is a sequence with bounded partial sums
and $\{b_n\}_{n\in\mathbb{N}}$ is a decreasing sequence that converges
to zero, then $\sum a_n b_n$ is a converging series.
Moreover, by applying Abel's lemma to the Taylor series of $\log(1-x)$:
$$-\log(1-x)=\sum_{n\geq 1}\frac{x^n}{n}$$
we get:
$$\sum_{n\geq 1}\frac{\sin(n\phi)}{n}=-\Im\log\left(1-e^{i\phi}\right)=\frac{\pi-\phi}{2},$$
and:
$$\sum_{n\geq 1}\frac{\cos(n\phi)}{n}=-\Re\log\left(1-e^{i\phi}\right)=-\log\left(2\sin\frac{\phi}{2}\right).$$