Let $A \in Mat(2\times 2, \mathbb{Q})$ be a matrix with $AB = BA$ for all matrices $B \in Mat(2\times 2, \mathbb{Q})$.
Show that there exists a $\lambda \in \mathbb{Q}$ so that $A = \lambda E_2$.
Let $E_{ij}$ be the matrix with all entries $0$ except $e_{ij} = 1$.
$$ \begin{align} AE_{11} &= E_{11}A \\ \left( \begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \\ \end{array} \right) \left( \begin{array}{cc} 1 & 0 \\ 0 & 0 \\ \end{array} \right) &= \left( \begin{array}{cc} 1 & 0 \\ 0 & 0 \\ \end{array} \right) \left( \begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \\ \end{array} \right) \\ \left( \begin{array}{cc} a_{11} & 0 \\ a_{21} & 0 \\ \end{array} \right) &= \left( \begin{array}{cc} a_{11} & a_{12} \\ 0 & 0 \\ \end{array} \right) \\ \end{align} $$
$\implies a_{12} = a_{21} = 0$
And then the same for the other three matrices $E_{12}, E_{21}, E_{22}$ …
I guess it's not the most efficient way of argueing or writing it down … ? Where's the trick to simplify this thingy?