1

I need to to solve: $$3t^2-\frac{12}{3}t+\frac{4}{3}=0$$

The solution manual factorizes this to $\dfrac{1}{3}(3t-2)^2$. How can you do this easily?

Aditya Hase
  • 8,851

3 Answers3

2

Take $\dfrac13$ common, to get this -

$\dfrac13\left({9t^2 - 12t + 4}\right)$ Using $(a + b)^2 = a^2 + b^2 + 2ab$, we can write the latter bracket as $(3t -2)^2$

Aditya Hase
  • 8,851
Ayan
  • 101
1

Hint: for $ax^2+bx+c=0$ Stick to $$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$$

Interesting thing is, It always works!

Aditya Hase
  • 8,851
0

A problem like this is easy if you make a substitution, for example. $$3t^2-\frac{12}{3}t+\frac{4}{3}=0$$ $$\frac{9}{3}t^2-\frac{12}{3}t+\frac{4}{3}=0$$ $$\frac{1}{3}(9t^2-12t+4)=0$$ $$\frac{1}{3}((3t)^2-4(3t)+4)=0$$ Now, let $s=3t$ $$\frac{1}{3}(s^2-4s+4)=0$$ $$\frac{1}{3}(s-2)^2=0$$ Substituting back we have $$\frac{1}{3}(3t-2)^2=0$$

John Joy
  • 7,790