Prove $C(A)=A\cup\partial A$.
I need to prove inclusion on both sides. Here is my attempt:
($\rightarrow$) $C(A)\subseteq A\cup\partial A$
Let $x\in C(A)$. Suppose $x\not\in A\rightarrow A$ is open. Since $x\in C(A)$, for $\epsilon>0,$ $B_\epsilon (x) \cap A\neq \emptyset$. Also since $A^c$ is closed, for $\epsilon>0,$ $B_\epsilon (x)/{x} \cap A^c\neq \emptyset$ (dubious?) Hence $x\in\partial A$.
($\leftarrow$) $A\cup\partial A\subseteq C(A)$
If $x_0\in A$ then by definition of closure it is in $C(A)$. So let $x_o\in\partial A/A$. Suppose $x_o\in C(A)^c$, which is open. Then $\exists\epsilon>0$ s.t. $B_\epsilon (x) \cap C(A)^c \neq \emptyset$ but by definition of boundary then $B_\epsilon (x) \cap C(A)\neq \emptyset$... not sure how to carry this over to $x\in\ C(A)$.