How do I show that p → q ⊢ ¬p ∨ q is valid without using LEM (Law of Excluded Middle)?
Edit:
I want to know if this is okay:
\begin{align} &\hspace{5pt}1.\; p\to q \hspace{43pt}\textrm{is given}\\ &\boxed{ \begin{align} &2.\; p &\textrm{Assumption}\\ &3.\; q &\textrm{from 1}\\ &4.\; \lnot p\vee q&\\ &5.\; \lnot p &\textrm{from 4}\\ &6. \perp \hspace{12pt}&\textrm{from 5 and 1} \end{align} }\\ &\hspace{5pt}7. \lnot p\\ &\hspace{5pt}8. \lnot p\vee q\\ \end{align}