I am trying to evaluate the $\lim(\sqrt[n]{n!})$ using 2 theorems (2 proofs)
Theorem 1: Let $\{c_n\}$ be any sequence in $\mathbb{R}^+$. Then, $\displaystyle \underline{\lim}\frac{c_{n+1}}{c_n}\leq \underline{\lim}\sqrt[n]{c_n}$ and $\displaystyle \overline{\lim}\sqrt[n]{c_n}\leq \overline{\lim}\frac{c_{n+1}}{c_n}$.
so with 1. I have $\frac{(n+1)!}{n!}$ =$n+1$ which is $\overline{\lim}=\infty$
and 2 with $\sqrt[n]{n!}\geq\sqrt[n]{(n/2)^{n/2}}$=$\sqrt{\frac{n}{2}}$ which is $\overline{\lim}=\infty$
is it valid?
P.S I was not using theorem 1 right