$n = 4k + 3 $
We start by letting $a \not\equiv 0\pmod n$ $\Rightarrow$ $a \equiv k\pmod n$ .
$\Rightarrow$ $a^{4k+2} \equiv 1\pmod n$
Now, I know that the contradiction will arrive from the fact that if we can show $a^2 \equiv 1 \pmod n $ then we can say $b^2 \equiv -1 \pmod n $ then it is not possible since solution exists only for $n=4k_2+1 $ so $a \equiv b\equiv 0 \pmod n $
So from the fact that $a^{2^{2k+1}} \equiv 1 \pmod n$ I have to conclude something.