2

I am reading a book "Discrete Mathematics for Computer Scientists". One of the exercises asks for a "story" proof of this: $\sum_{i=j}^n {i \choose j} = {n+1 \choose j+1}$.

My question is that:

  1. What is a story proff?
  2. What is the story proof of this identity?

Screenshot of the book:

enter image description here

Kartik
  • 1,413

4 Answers4

3

If you read ${n+1} \choose{j+1}$ as: You have $n+1$ numbered boxes $\{1,...,n+1\}$ and you want to place $j+1$ indistinguishable balls in these boxes (at most one in a box), how many ways is that possible . Then we look at different cases: To do this look at $x$ defined as the highest number for which the box is occupied. Note $x>j$ since all balls must be placed. This means that the other $j$ balls are distributed in the boxes $\{1,...,x-1\}$. This can be done in ${x-1} \choose {j}$ ways. Now we can sum $x$ over ${j+1,...,n+1}$. Therefor we get $\sum _{i=j}^n {i\choose j}={n+1 \choose j+1}$.

Kaladin
  • 1,485
1

$$\binom{n+1}{j+1}$$ is the number of subset with $j+1$ element of a set with $n+1$ element. Let $E$ a set with $n$ element. Let $a\in E$. The number of subset of with $j+1$ element contain $a$ are $\binom{n}{j}$ and the number of subset that doesn't contain $a$ are $\binom{n}{j+1}$. Then $$\binom{n+1}{j+1}=\binom{n}{j}+\binom{n}{j+1}$$ By reccursion,

$$\binom{n}{j+1}=\binom{n-1}{j+1}+\binom{n-1}{j}$$

And at the end, you'll get

$$\binom{n+1}{j+1}=\sum_{i=j}^n\binom{i}{j}+\underbrace{\binom{j}{j+1}}_{=0}=\sum_{i=j}^n\binom{i}{j}$$

idm
  • 11,824
  • This isn't a 'story proof' the OP is looking for. – Simon S Dec 02 '14 at 14:09
  • It's not complicate to adapte it to a story. Juste define $n+1$ balls with $n+1$ different color, and to count the possibilities the combinaison that doesn't contain $j$ color... – idm Dec 02 '14 at 14:43
0

$\binom{n+1}{k+1}$ means the number of ways I can select $k+1$ objects from $n+1$ given objects. To do this, it means I select an object to begin with and then select $k$ elements which come before that object. I can do this because the collections with elements after that object are simply the collections with elements before some later element.

Expanding on this, we can write: the number of ways I can select $k+1$ objects from $n+1$ given objects is

  • number of ways I can choose $k$ after choosing the $(k+1)$th element OR
  • number of ways I can choose $k$ after choosing the $(k+2)$th element OR
  • number of ways I can choose $k$ after choosing the $(k+3)$th element OR
  • $\cdots$
  • number of ways I can choose $k$ after choosing the $(k+(n-k))$th element

Which is just the `story' form of $$\sum_{i=j}^n {i \choose j} = {n+1 \choose j+1}$$

shardulc
  • 4,562
-1

$\newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle} \newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack} \newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,} \newcommand{\dd}{{\rm d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,{\rm e}^{#1}\,} \newcommand{\fermi}{\,{\rm f}} \newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,} \newcommand{\half}{{1 \over 2}} \newcommand{\ic}{{\rm i}} \newcommand{\iff}{\Longleftrightarrow} \newcommand{\imp}{\Longrightarrow} \newcommand{\Li}[1]{\,{\rm Li}_{#1}} \newcommand{\pars}[1]{\left(\, #1 \,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\pp}{{\cal P}} \newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,} \newcommand{\sech}{\,{\rm sech}} \newcommand{\sgn}{\,{\rm sgn}} \newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}} \newcommand{\ul}[1]{\underline{#1}} \newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}$

\begin{align}&\color{#66f}{\large\sum_{k\ =\ j}^{n}{k \choose j}} =\sum_{k\ =\ j}^{n}\oint_{\verts{z}\ =\ 1} {\pars{1 + z}^{k} \over z^{j + 1}}\,{\dd z \over 2\pi\ic} =\oint_{\verts{z}\ =\ 1} {1 \over z^{j + 1}}\sum_{k\ =\ j}^{n}\pars{1 + z}^{k}\,{\dd z \over 2\pi\ic} \\[5mm]&=\oint_{\verts{z}\ =\ 1}{1 \over z^{j + 1}}\,\pars{1 + z}^{j}\, {\pars{1 + z}^{n - j + 1} - 1 \over \pars{1 + z} - 1}\,{\dd z \over 2\pi\ic} \\[5mm]&=\oint_{\verts{z}\ =\ 1}{\pars{1 + z}^{n + 1}\over z^{j + 2}} \,{\dd z \over 2\pi\ic} -\oint_{\verts{z}\ =\ 1}{\pars{1 + z}^{j}\over z^{j + 2}} \,{\dd z \over 2\pi\ic} ={n + 1 \choose j + 1} -\ \underbrace{j \choose j + 1}_{\ds{=\ \color{#c00000}{0}}}\ = \ \color{#66f}{\large{n + 1 \choose j + 1}} \end{align}

Felix Marin
  • 89,464