$\newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle}
\newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\half}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\Li}[1]{\,{\rm Li}_{#1}}
\newcommand{\pars}[1]{\left(\, #1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}$
\begin{align}&\color{#66f}{\large\sum_{k\ =\ j}^{n}{k \choose j}}
=\sum_{k\ =\ j}^{n}\oint_{\verts{z}\ =\ 1}
{\pars{1 + z}^{k} \over z^{j + 1}}\,{\dd z \over 2\pi\ic}
=\oint_{\verts{z}\ =\ 1}
{1 \over z^{j + 1}}\sum_{k\ =\ j}^{n}\pars{1 + z}^{k}\,{\dd z \over 2\pi\ic}
\\[5mm]&=\oint_{\verts{z}\ =\ 1}{1 \over z^{j + 1}}\,\pars{1 + z}^{j}\,
{\pars{1 + z}^{n - j + 1} - 1 \over \pars{1 + z} - 1}\,{\dd z \over 2\pi\ic}
\\[5mm]&=\oint_{\verts{z}\ =\ 1}{\pars{1 + z}^{n + 1}\over z^{j + 2}}
\,{\dd z \over 2\pi\ic}
-\oint_{\verts{z}\ =\ 1}{\pars{1 + z}^{j}\over z^{j + 2}}
\,{\dd z \over 2\pi\ic}
={n + 1 \choose j + 1} -\
\underbrace{j \choose j + 1}_{\ds{=\ \color{#c00000}{0}}}\ = \
\color{#66f}{\large{n + 1 \choose j + 1}}
\end{align}