Define $V_{p,q}=\underset{p}{\underbrace{V\otimes\cdots\otimes V}}\otimes\underset{q}{\underbrace{V^{*}\otimes\cdots\otimes V^{*}}}$.
In a previous question here I was shown that $\hom_{k}\left(V_{1,0},V_{1,0}\right)=\mbox{End}V\simeq V\otimes V^{*}=V_{1,1}$. Now I've heard that this could be generalized to the form: $\hom_{k}\left(V_{p,q},V_{r,s}\right)\simeq V_{q+r,p+s}$ for all $p,q,r,s\in\mathbb{N}$. How do you prove this?
Thanks!